DHFT CHART. NOTES: PCT/ERT Meeting (2-26-96) Feb 23, 1996 V WORK GROUP NUMBER 1: BLUE

S = Strength

W = Weakness

sey ic	Anema	uives.		
‡7 ‡8 ‡14 ‡15	Chain Small	Water Management with Environmental Storage Chain of Lakes Isolated Facility Small West-Side Conveyance Facility Large West-Side Storage and Conveyance		
W	#15	Westside large tributaries and Sacramento River effects; hydrodynamics; upstream storage magnitude (8-10 maf)		
		May be possible to identify narrow windows to divert water		
W		Integrity of tributaries for spring-run attraction flows		
S		If we capture peak floodflows into storage re: spilling into bypasses reduce fish stranding; may affect a substantial number of fish but this has not been measured (-salmon/+splittail)		
		Splittail reproduction correlated with overbank flows (i.e., bypass flooding)		
		Peak floodflows = overall least damaging to fish if captured		
		? splittail reproductive habitat mitigated by		
		Much uncertainty regarding factors affecting reproduction		
		How are these incorporated into the alternatives?		
S	#14	Less risk with small facility		
		Lack of biological data regarding altering Sacramento River hydrodynamics		
Ş	#15	Maybe not trimming downstream flows, only reduce encroachment on flood storage		
		Don't change peak flow, only the duration of peak flows		
		Extra days of flow would go into westside storage		
S	#15	? Captured flows can be used for environmental benefits if turbid releases; doubtful		

benefit

S	#14	Shallow reservoirs produce turbidity problem
		Instead of delivering stored water to districts in canal, leave water in the Sacramento River: "substitution benefit"
W	#14	Terrestrial impacts (deer in canal in concentrated areas)
		? Could design canal to mitigate interception of migration routes: ongoing
		(DWR no district report)
W	#14	It's better to divert water at Shasta Dam
		Need to fix Red Bluff Diversion Dam effects
		? Pump peak flows
W	#14	Cost concern: "affordability"
		habitat meander beltcanal and reservoirs
S	#14	Ecosystem benefits of meander belt are firm; linked with flood control (SB1086)
W	#14	Need to link meander belt with flood conveyance improvement downstream "as system" weirs and elevation control points
S	#14	Meander belt good
		? Redesign Moulton, Colusa, and Tisdale weirs regarding flood distribution vis-a-vis (in relation to?) flow elevation
S	#14	Link meander belt redesign with bypass habitat improvements (e.g., fish stranding)
		? Better to keep high flows in river
W	#14	Uncertainty risk regarding bypass habitat
W	#14	Need to add SOD storage (avoid impacts to fish) with substitute supply
S	#14	NOD storage benefits provided by small transfer (5,000-10,000 cfs)
?	#14	Issue: who gets to use new storage?

B -0 0 1 3 8 3

- --project water exclusively
- --back to river in dry years
- ? Can decide split later
- S #14 Benefits to fish:
 - --reduce entrainment at local diversion
 - --fix Red Bluff Diversion Dam
- S #14 In dry, critical years, Shasta water remains for river use
- W #14 Cannot mitigate deer winter range
- W #14 Will need to reoperate Shasta and Trinity Dams; will be constrained by temp (temporary? or temperature?)/management needs below Red Bluff Diversion Dam

Regarding existing and new diversions to westside storage, we need operations study on real benefits

- need for levee improvements correlated with extent that water supply and ecosystem quality depend on Delta:
 - "what is the impact of levee failures?"
 - "are levees providing a service to the Delta?
- Delta landowners are helped most by emergency levee management plans
- 3,000 cfs at Italian Slough is a benefit during low export Distinguish improving screens at Italian Slough
- Old River at San Joaquin River needs design work State as general fix for salmon outmigration
 - Concerns: --upstream flooding
 - --downstream flooding
 - --will it work?
- ? #14 The logic regarding water quality pollutant source control:
 - ? In-Delta versus upstream water source: does not control treatment cost if we have to comply with new standards
- S #14 NOD storage to capture peaks (new or bigger Shasta): Key for a final alternative

·0 0 1 3 8 4

- SOD storage more important (continue to <u>not</u> capture NOD peak flows; capture peak flows in Delta (farther downstream); allows curtailment of Delta diversions during critical periods
- S #14 With Keswick Canal?, big benefit to eliminate onstream diversions

? GCID problem will be fixed with CVPIA

NOD storage: eliminate all agricultural diversion in all year types

- W #14 Meander belt results in sediment erosion and deposition in Delta; therefore, monitoring and maintenance of channel capacity or
- S #14 More deposition in <u>newly</u> available overbank areas

Need sedimentation analysis

S #14 With increased export capacity, we can reduce entrainment

Pumping during high flows has less incremental entrainment without loss of annual yield

- S #7 Extra pumping capacity results in a benefit of its own for interim (even without SOD storage); for example, maybe fill San Luis Reservoir earlier to reduce later export
- W #7 Can now operate export pumps to 15,000 cfs when San Joaquin River flows are available

Longer period for 15,000 cfs would be only small incremental benefit

S #7 In Delta, storage benefits - trade for upstream pulse flows

In-Delta storage issues:

- San Joaquin River salmon problems: Vernalis to lower Mokelumne
- Adult smelt returning to spawn may be subject to entrainment
- Screened diversions in Delta still fish entrainment ("bathtub effect")
- During peak flows (Sacramento River dominates), diversions to in-Delta islands will have little effect
- Winter storms result in huge numbers of fish moving through the system (delay diversion to declining limb of hydrograph)

S	#7	Is in-Delta better than SOD storage?
		cheapermore flexible usemultiple benefits onsite (habitat, levees, etc.)
W	#7	Double diversion a problem (avoid by SOD storage)
S		SOD storage in general: env share [?] available to shut down pumps
S		In-Delta storage uses existing pumps during available windows
W		(SOD storage required new conveyance)
S		In-Delta storage leads to controlling subsidence
	щ	Don't diversion time to in Delte store so is often first storms
	#7	Best diversion time to in-Delta storage is after first storms
		Refuge water supplies are a constraint on conveyance
W	#7	Only modest gain regarding water supplyStill have Delta water quality problemsRetains the fish-diversion conflictRedirected impacts of land retirement
W	#7	Only an interim fix, but is beneficial for interim
S	#7	Land retirement has long-term benefits
S	#7	Good balance of water supply and demand management aspects, but for limited/interim period; needs to be complemented by long-term aspects
S	#7	could be implemented quickly
		Fits as interim step for through-Delta alternatives
S	#8	Potential benefits, but needs a great deal of study
		system reliability should not rely on widespread levee improvement
S	#8	Incorporates both storage and transfer
S	#8	Enables maximum capture of peak flows (multiple diversion points)
		Functions as small isolated facility during low-flow periods

S	#8	Multiple benefits of linkage of levee improvement/habitat improvement/storage
S	#8	Need operating criteria with regard to diversions operated with real-time monitoring to avoid entrainment
	#8	Is having multiple diversion points better than having a single diversion point?
W	#8	When would a central-Delta diversion point be desirable?
S	#8	Multiple diversion needed to capture peak flows
S	#8	Could be built incrementally
W	#8	Ability to address south-Delta water quality problems: releases from storage?
W	#8	Small shallow reservoirs don't stratify resulting in algal problems and therefore, unstable; drinking water problem